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Abstract

A classical method for finding a point in the intersection of a finite collection of closed

convex sets is the successive projection method. It is well-known that this method is convergent if

each convex sets is chosen for projection in a cyclical manner. In this note we show that this method

is still convergent if the length of the cycle grows without bound, provided that the growth is not too

fast. Our argument is based on an interesting application of the Cauchy-Schwartz inequality.
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1. Introduction

A fundamental problem in convex programming is that of finding a point in the intersection

of a finite collection of closed convex sets. This problem has many application areas, including

image reconstruction [SSW77], [Her80], linear prediction theory, multigrid methods, computed

tomograph [Deu85], optimal control [GPR67], machine learning [MiP88], and linear/quadratic

programming [Bre65]. One classical method for solving this problem is the successive projection

method, whereby an arbitrary starting point is successively projected onto the individual convex sets

to generate a sequence of points converging to a solution. This method was first proposed by

Kacmarz [Kac37] for the special case where the sets are linear varieties (i.e., translates of

subspaces), and was rediscovered by von Neumann [voN50], by Agmon [Agm54], and by Motzkin

and Schoenberg [MoS54]. (Also see [Deu85], [Gof80], [Gof82], [Hal62], [Man84], [Mer62],

[SSW77], [Tan7 1] for more detailed treatments of the linear case, including rate of convergence

analysis [Agm54], [Deu85], [Gof80O], [Gof82], [Man84], [Mer62], [SSW77] and finite convergence

analysis [MoS54], [Gof80], [Gof82].) Extensions of this method to arbitrary convex sets are

discussed in [Bre65], [Ere65], [Ere66], [GeS66], [GPR67], [Pol69], amongst which the analysis

given in [GPR67] is the most extensive. This method can also be applied to problems in a product

space to obtain a highly parallelizable method of barycentres [Pie84].

In all the existing successive projection methods, the sets are chosen for projection either in

an essentially cyclic order (i.e., every set is chosen at least once every B iterations, for some fixed B

> 0) or according to a maximal distance rule (i.e., choose a set that is in some sense farthest away

from the current point). (Numerical evidence suggests that the essentially cyclic order is perhaps the

more efficient [Man84].) In this note we show that the essentially cyclic order can be further

extended to one that allows the length of each cycle, namely B, to increase without bound, provided

that the rate of increase is not too fast. This extension, apart from its theoretical appeal, has the

practical advantage that it allows sets for which projection is expensive to be left out of the

computation increasingly more often.
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2. Algorithm Description

Let H be a real Hilbert space endowed with an inner product (-,.) and let I11-11 denote the norm

induced by the inner product (i.e., lixil = (x,x)). Let C 1, C 2, ... , Cm be a given collection of
closed convex sets in H3. Our problem is to find a point in C = ClnC2n .. .nCm. We make the
following standing assumption regarding the Ci's.

Assumption A (feasibility): ClnrC 2 rn...nrCm : 0.

Assumption A is fairly standard. Some results for the case where the Ci's do not intersect are given

in [GPR67].

We describe the successive projection method below. In this method, we begin with an
arbitrary x(0) in H3 and we generate a sequence of points {x(0), x(l), ... } in 3C according to the
iteration:

y(t) = argmin{ Ily - x(t)ll I ye Co(t }, (la)

x(t+l) = co(t) y(t) + (1-c0(t)) x(t), (lb)

where o(t) is an element of { 1,2, ... ,m} (a(t) specifies the set onto which projection is made at the t-
th iteration), and o(t) is a scalar (called a relaxation parameter) satisfying

e < o(t) < 2-£, V t, (1c)

for some fixed eE (0,1]. The relaxation mechanism co(t) was first introduced in [Agm54] and in
[MoS54]. It has been observed that, in certain cases, a value of co(t) different from one (i.e.,

under/over-relaxation) can significantly improve the convergence [Gof8O], [Her80], [Man84].

The iterates {x(t) } in general do not converge unless we impose certain restrictions on the
order in which projection onto the sets C 1, C 2, ... , Cm are made. We will consider the following

order of projection, introduced in [TsB87]:
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Quasi-Cyclic Order: There exists a sequence of integers {t l , T2, ... } satisfying

r1 = 0, 'k+l--tk 2 m V k, X1/(tk+l - k) = o, (2a)
k=l

for which

(1,2, ... ,m} C {Q(Zk), O(tk+l), ... , o(Zk+l-1)1, V k. (2b)

Roughly speaking, the quasi-cyclic order (of projection) states that every set Ci must be

chosen for projection at least once between the tk-th and the ('lk+l-1)-st iteration (called the k-th

quasi-cycle) for all k [cf. (2b)], and that the length of the k-th quasi-cycle, namely Xk+1 - Xk, cannot
grow too fast with k [cf. (2a)]. One particular choice of the xk's, namely tk = m(k-1) for all k,

gives rise to the well-known cyclic order (of projection), for which o(t) = t (mod m) + 1 for all t (and
the length of each quasi-cycle is exactly m). A more interesting choice of the Zk'S is given by

tk+l = Zk + km, Vk,

for which the length of the k-th quasi-cycle increases linearly with k.
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3. Convergence Analysis

Below we give the main result of this note.

Theorem 1. Let {x(t)} be a sequence of iterates generated by (la)-(lc) using the quasi-cyclic

order of projecton. Then, {x(t)} converges in the weak topology to a point x° in C.

Proof: Fix any xe C. For any nonnegative integer t, we have from (la) that y(t) is the orthogonal

projection of x(t) onto C(t). Since xe C so that xe C(t) (cf. definition of C), this implies

(y(t)- x(t), x- y(t)) > O.

Since [cf. (lb)]

IRx - x(t)112 = Iix - x(t+l)112 + 2c(t) (y(t) - x(t), x - y(t)) + to(t) (2-c(t)) Ily(t)- x(t)112,

this, together with (ic), implies

Ix_- x(t)112 2 Ix- x(t+1)112 + 211x(t+l) - x(t)112, V t 2 0, (3)

so that { x(t) } is bounded, Ili - x(t)ll is nonincreasing with t, and

IIx(t+l) - x(t)112 < oo. (4)
t=O

We claim that there exists a subsequence KC of { 1,2,... } for which

Ik+1
, IIx(t+l) - x(t)ll -* 0 ask -o, kE. (5)

t=tk+l

To see this, suppose that such a subsequence does not exist. Then, there would exist a positive

scalar 6 and an integer k such that



t k+1

_< I IIx(t+l) - x(t), V k2 k.
t=tk+l

Since, by the Cauchy-Schwartz inequality, there holds

Ik+l k+l

I Ilx(t+l)-x(t)ll < I Ilx(t+l) - x(t)112 Tk+l - tk,

t--k+ 1 t='k+ 1

this implies

Tk+1
82 < E Ilx(t+l) -x(t)112 (Zk+l -_ k), I k 2 k,

t='k+1

so that

I k+1

86 E /(tk+l k) < E [ E Ilx(t+l) - x(t)ll2 ]
k=k k-=k t=tk+l

- IIx(t+l) - x(t)112. (6)
t=tk+l

The left hand side of (6), by (2a), has the extended value of oo, while the right hand side of (6)

according to (4) has finite value, thereby reaching a contradiction. Hence, (5) holds for some

KC { 1,2,...}.

Let C be any subsequence of 11,2,... } satisfying (5). Since {x(t) I is bounded [cf. (3)],

there exist some x00e K3 and some K' C K such that

{x(tk+l) }kE ' converges weakly to x'. (7)

We claim that x00e C. To see this, fix any ie { 1,2,...,m}. Since the projections are in the quasi-

cyclic order, then for each integer k > 1 there exists some PkE {'k, Zk+l, ... , k+l- } satisfying
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6((Pk) = i [cf. (2b)]. By using the triangle inequality together with the fact IIlx(pk+l) - y(pk)ll <

(l/e-l)llx(pk+l) - x(pk)ll for all k > 1 [cf. (lb), (Ic)], we have

tk+l

IIx(tk+l) -y(pk) < IIx(t+l) - x(t)ll + IIx(pk+l) - y(pk)ll
t='k+l

'k+1

< , I]x(t+l) - x(t)ll + (1/e-l)llx(pk+l) - x(pk)ll, V k 1. (8)
t=k+l

Eqs. (5), (8) together with {llx(t+l) - x(t)ll} -- 0 [cf. (4)] imply

lim IIx(zk+l)-y(pk)ll = 0,
k->oo,ke kC'

which, combined with (7), yields

lim (u, Y(Pk)) = lim (u, x(k+l)) = (UX), x V uE3{,
k-oo,kEY .' k--)o,ke .C'

so that {Y(Pk) }kE ' converges weakly to x-. Since Y(Pk)e Ci [cf. a(pk) = i and (la)] for all k and

C i is closed and convex, this shows x°e C i [DuS66, p. 422, Theorem 3.13]. Since the choice of i

was arbitrary, we obtain x-e C i for all i, and therefore x°e C.

We now show that { x(t)} has a unique weak limit point. Our argument follows that given in

[Bre65] and is presented here for completeness. Suppose that { x(t) I does not have a unique limit
point. Then, there exist xl~e C, x2 re C with xl° • x2 ' and subsequences { x(t) }tE T 1, {x(t) }t T2

converging weakly to, respectively, xl~ and x2 '. By replacing x in (3) by xlj, we find that Ilxl -

x(t)ll is nonincreasing with t so that there exists a scalar Xa such that

{llxl- x(t)112} -_ al. (9a)

Similarly, by replacing x in (3) by x2°, we find that there exists a scalar %z such that
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Now, for any te T1 we have

Ilx2- x(t)112 = Ilx 2 X- l112+ 2(x2
° - -Xl, X(t)) + IIX °--X(t)112,

so that, by letting t -- oo, teT1, we obtain from (9a)-(9b) and the weak convergence of {x(t) I}tT 1 to

xl ° that Co2 = IIx2 °°- x1°°112 + al. By an analogous argument with the role of xl°° and x2
° reversed,

we also obtain al = IIx °°- x2°112 + a2 . Adding these two relations yields 0 = Ilxl °°- x2°12 and

hence xl°° = x2
° , a contradiction. Q.E.D.

We remark that strong convergence of the sequence {x(t) I generated by (la)-(lc), using the

quasi-cyclic order of projection, can also be established under the same set of conditions on the Ci's

as those given by Gubin et. al. [GPR67, Theorem 1]. The proof of this follows (in a

straightforward manner) from combining the proof of Theorem 1 with that of [GPR67, Theorem 1].
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